Sabtu, 18 Desember 2021

Nama : Ariyadi Dwi Saputra

Kelas : IF20C

NPM : 20312084 


IMPLEMENTASI ALGORITMA DIVIDE AND CONQUER PADA SORTING DAN SEARCHING

 

1.     Insertion sort

Salah satu algoritma sorting yang paling sederhana adalah insertion sort. Ide dari algoritma ini dapat dianalogikan seperti mengurutkan kartu. Penjelasan berikut ini menerangkan bagaimana algoritma insertion sort bekerja dalam pengurutan kartu. Anggaplah anda ingin mengurutkan satu set kartu dari kartu yang bernilai paling kecil hingga yang paling besar. Seluruh kartu diletakkan pada meja, sebutlah meja ini sebagai meja pertama, disusun dari kiri ke kanan dan atas ke bawah. Kemudian kita mempunyai meja yang lain, meja kedua, dimana kartu yang diurutkan akan diletakkan. Ambil kartu pertama yang terletak pada pojok kiri atas meja pertama dan letakkan pada meja kedua. Ambil kartu kedua dari meja pertama, bandingkan dengan kartu yang berada pada meja kedua, kemudian letakkan pada urutan yang sesuai setelah perbandingan. Proses tersebut akan berlangsung hingga seluruh kartu pada meja pertama telah diletakkan berurutan pada meja kedua. Algoritma insertion sort pada dasarnya memilah data yang akan diurutkan menjadi dua bagian, yang belum diurutkan (meja pertama) dan yang sudah diurutkan (meja kedua). Elemen pertama diambil dari bagian array yang belum diurutkan dan kemudian diletakkan sesuai posisinya pada bagian lain dari array yang telah diurutkan. Langkah ini dilakukan secara berulang hingga tidak ada lagi elemen yang tersisa pada bagian array yang belum diurutkan.

Algoritmanya : 


2.     Selection sort

Jika anda diminta untuk membuat algoritma sorting tersendiri, anda mungkin akan menemukan sebuah algoritma yang mirip dengan selection sort. Layaknya insertion sort, algoritma ini sangat rapat dan mudah untuk diimplementasikan. Mari kita kembali menelusuri bagaimana algoritma ini berfungsi terhadap satu paket kartu. Asumsikan bahwa kartu tersebut akan diurutkan secara ascending. Pada awalnya, kartu tersebut akan disusun secara linier pada sebuah meja dari kiri ke kanan, dan dari atas ke bawah. Pilih nilai kartu yang paling rendah, kemudian tukarkan posisi kartu ini dengan kartu yang terletak pada pojok kiri atas meja. Lalu cari kartu dengan nilai paling rendah diantara sisa kartu yang tersedia. Tukarkan kartu yang baru saja terpilih dengan kartu pada posisi kedua. Ulangi langkah – langkah tersebut hingga posisi kedua sebelum posisi terakhir dibandingkan dan dapat digeser dengan kartu yang bernilai lebih rendah.

Ide utama dari algoritma selection sort adalah memilih elemen dengan nilai paling rendah dan menukar elemen yang terpilih dengan elemen ke-i. Nilai dari i dimulai dari 1 ke n, dimana n adalah jumlah total elemen dikurangi 1.

Algoritmanya :

3.     Quick sort

Quicksort ditemukan oleh C.A.R Hoare. Seperti pada merge sort, algoritma ini juga berdasar pada pola divide-and-conquer. Berbeda dengan merge sort, algoritma ini hanya mengikuti langkah – langkah sebagai berikut :

1. Divide

Memilah rangkaian data menjadi dua sub-rangkaian A[p…q-1] dan A[q+1…r] dimana setiap elemen A[p…q-1] adalah kurang dari atau sama dengan A[q] dan setiap elemen pada A[q+1…r] adalah lebih besar atau sama dengan elemen pada A[q]. A[q] disebut sebagai elemen pivot. Perhitungan pada elemen q merupakan salah satu bagian dari prosedur pemisahan

2. Conquer

Mengurutkan elemen pada sub-rangkaian secara rekursif

Pada algoritma quicksort, langkah “kombinasi” tidak di lakukan karena telah terjadi pengurutan elemen – elemen pada sub-array

Algoritmanya :

4.     Counting sort

Adalah sebuah algoritma sorting linear yang digunakan untuk mengurutkan ‘item’ ketika urutannya telah ditentukan dan memiliki panjang yang terbatas. Bilangan interval yang telah tetap, katakana k1 ke k2 adalah contoh dari ‘item’ tersebut. Counting sort sebenarnya merupakan metode pengurutan yang memanfaatkan index variabel array. Hanya effektif pada data yang nilainya kecil.

Algoritma ini diproses dengan mendefinisikan sebuah hubungan urutan antara ‘item’ yang akan disorting. Katakana ‘item’ yang akan disorting adalah variable A. Maka, terdapat sebuah array tambahan dengan ukuran yang serupa dengan array A. katakana array tersebut adalah array B. untuk setiap element di A, sebut e, algoritma ini menyimpan jumlah ‘item’ di A lebih kecil dari atau sama dengan e di B(e). jika hasil sorting yang terakhir disimpan di array C, maka untuk masing-masing e di A, dibuat dalam arah yang sebaliknya, yaitu C[B(e)]=e. setelah step di atas, niali dari B(e) berkurang dengan 1.

Algoritma ini membuat 2 passover A dan passover B. Jika ukuran dari range k lebih kecil dari ukuran input n, maka time complexity = O(n). perhatikan juga bahwa algoritma ini stabil yang berarti bahwa sambungan diselesaikan dengan langsung mengabarkan element-element yang muncul pertama kali.

Adapun syarat algoritma ini berjalan dengan baik ialah:

1.      Data harus bilangan bulat yang bernilai lebih besar atau sama dengan nol

2.      Range data diketahui

Ada 3 macam array yang terlibat:

1.      Array untuk mengisi bilangan yang belum diurutkan.

2.      Array untuk mengisi frekuensi bilangan itu, sekaligus sebagai penghitung kejadian.

3.      Array untuk mengisi bilangan yang sudah diurutkan.

Algoritmanya :



5.     Radix sort

Radix sorting bisa digunakan ketika masing-masing universal element bisa dilihat sebagai sebuah urutan digit (atau huruf atau symbol lainnya). Sebagai contoh, kita bisa membuat masing-masing bilangan bulat antar 0 sampai 99 sebagai sebuah urutan dengan dua digit (seperti “05”). Untuk menyorting sebuah array dari angka 2-digit, algoritma ini membuat dua ‘passing’ sorting melalui array tersebut. Pada ‘passing’ pertama, element array disorting pada least significant decimal digit. Kunci utama dari radix sort adalah pada passing yang kedua. Hasilnya, setelah kedua passing melewati array tersebut, data yang terisi telah disorting.

Algoritmanya :






 

6.     Linear searching

Algoritma pencarian secara linear adalah algoritma untuk mencari sebuah nilai pada table sambarang dengan cara melakukan pass atau transversal. Transversal dari awal sampai akhir table. Ada dua macam cara pencarian pada table. Algoritma mempunyai dua jenis metode yaitu dengan Boolean dan tanpa Boolean.

 





Algoritma di atas melakukan pengulangan sampai i sama dengan Nmax (ukuran tabel) atau harga value dalam tabel sudah ditemukan. Kemudian harga i di-assign ke dalam variable idx. Elemen terakhir diperiksa secara khusus.



Jumat, 10 Desember 2021

Sejarah, Definisi dan Cara Kerja Algoritma Divide and Conquer.

Nama : Ariyadi Dwi Saputra
Kelas : IF20C
Npm : 20312084


Sejarah Algoritma Devide dan Conquer

Awal dari algoritma ini utamanya adalah pengurangan dan penaklukan - masalah asli secara berturut-turut dipecah menjadi sub-masalah tunggal, dan memang dapat diselesaikan secara berulang.

Pencarian biner, algoritma penurunan-dan-taklukkan di mana sub-masalah berukuran kira-kira setengah dari ukuran aslinya, memiliki sejarah yang panjang. Sementara deskripsi yang jelas tentang algoritma pada komputer muncul pada tahun 1946 dalam sebuah artikel oleh John Mauchly, gagasan untuk menggunakan daftar item yang diurutkan untuk memfasilitasi pencarian tanggal kembali setidaknya sejauh Babylonia pada 200 SM.
Algoritma penurunan-dan-taklukkan kuno lainnya adalah algoritma Euclidean untuk menghitung pembagi persekutuan terbesar dari dua bilangan dengan mengurangi bilangan tersebut menjadi subproblem ekuivalen yang lebih kecil dan lebih kecil, yang berasal dari beberapa abad SM.

Contoh awal dari algoritma bagi-dan-taklukkan dengan beberapa subproblem adalah deskripsi Gauss tahun 1805 tentang apa yang sekarang disebut algoritma Cooley – Tukey fast Fourier transform (FFT), meskipun dia tidak menganalisis jumlah operasinya secara kuantitatif, dan FFT tidak tersebar luas sampai mereka ditemukan kembali lebih dari satu abad kemudian.

Algoritma D&C dua sub problem awal yang secara khusus dikembangkan untuk komputer dan dianalisis dengan benar adalah algoritma pengurutan gabungan, yang ditemukan oleh John von Neumann pada tahun 1945.

Contoh penting lainnya adalah algoritma yang ditemukan oleh Anatolii A. Karatsuba pada tahun 1960 [8] yang dapat mengalikan dua angka n-digit di O (n log 2 ⁡ 3) {\ displaystyle O (n ^ {\ log _ {2} 3} )} O (n ^ {\ log _ {2} 3}) operasi (dalam notasi Big O). algoritma ini menyangkal dugaan Andrey Kolmogorov tahun 1956 bahwa operasi Ω (n 2) {\ displaystyle \ Omega (n ^ {2})} \ Omega (n ^ {2}) diperlukan untuk tugas tersebut.
Sebagai contoh lain dari algoritma bagi-dan-taklukkan yang awalnya tidak melibatkan komputer, Donald Knuth memberikan metode yang biasanya digunakan kantor pos untuk merutekan surat: surat diurutkan ke dalam kantong terpisah untuk wilayah geografis yang berbeda, masing-masing kantong ini diurutkan sendiri ke dalam batch untuk sub-wilayah yang lebih kecil, dan seterusnya sampai dikirimkan. Ini terkait dengan jenis radix, yang dijelaskan untuk mesin sortir kartu berlubang sejak tahun 1929.

Definisi Algoritma Devide dan Conquer

Dalam ilmu komputer, Algoritma divide and conquer adalah paradigma desain algoritma yang didasarkan pada rekursi multi-cabang. Algoritme bagi-dan-taklukkan bekerja dengan memecah masalah secara rekursif menjadi dua atau lebih sub-masalah dari jenis yang sama atau terkait, hingga masalah ini menjadi cukup sederhana untuk diselesaikan secara langsung.

Cara Kerja Algoritma Devide dan Conquer

Contoh sederhana : Misalkan, untuk menghitung total jumlah dari bilangan-bilangan yang ada di dalam sebuah list, kita dapat menggunakan perulangan sederhana

nums = [1, 2, 3, 5, 6, 7, 19, 28, 58, 18, 28, 67, 13]
total = 0

for i in range(0, len(nums)):
    total = total + nums[i]

print(total) # 255

Algoritma perulangan yang digunakan pada kode di atas memang sederhana dan memberikan hasil yang benar, tetapi terdapat beberapa masalah pada kode tersebut, yaitu perhitungan dilakukan secara linear, yang menghasilkan kompleksitas O(n). Hal ini tentunya cukup ideal untuk ukuran list kecil, tetapi jika ukuran list menjadi besar (beberapa Milyar elemen) maka perhitungan akan menjadi sangat lambat. Kenapa perhitungannya menjadi lambat? Karena nilai dari total tergantung kepada kalkulasi nilai total sebelumnya. Kita tidak dapat melakukan perhitungan total dari depan dan belakang list sekaligus, sehingga kita dapat mempercepat perhitungan dua kali lipat. Dengan kode di atas, kita tidak dapat membagi-bagikan pekerjaan ke banyak pekerja / CPU!

Lalu apa yang dapat kita lakukan? Langkah pertama yang dapat kita lakukan adalah menerapkan teknik rekursif untuk membagi-bagikan masalah menjadi masalah yang lebih kecil. Jika awalnya kita harus menghitung total keseluruhan list satu per satu, sekarang kita dapat melakukan perhitungan dengan memecah-mecah list terlebih dahulu:

 def sums(lst):
    if len(lst) >= 1:
         return lst[0]

    mid = len(lst) // 2
    left = sums(lst[:mid])
    right = sums(lst[mid:])

    return left + right

print(sums(nums)) # 255 

Apa yang kita lakukan pada kode di atas?

  1. Baris if len(lst) >= 1 memberikan syarat pemberhentian fungsi rekursif, yang akan mengembalikan isi dari list ketika list berukuran 1 (hanya memiliki satu elemen).
  2. Baris mid = len(lst) // 2 mengambil median dari list, sebagai referensi ketika kita membagi list menjadi dua bagian.
  3. Baris left = sum(lst[:mid]) dan selanjutnya membagikan list menjadi dua bagian, dengan nilai mid sebagai tengah dari list.

Singkatnya, setelah membagikan list menjadi dua bagian terus menerus sampai bagian terkecilnya, kita menjumlahkan kedua nilai list tersebut, seperti pada gambar berikut:

Cara Kerja Algoritma Devide n Conquer

    Software Requirements Specification for Aplikasi Sistem Informasi    Akademik Mahasiswa Berbasis Web   Version 1.0 appro...